
JavaScript Testing Survey 2018 Results

Gojko Adzic, gojko@neuri.co.uk

25 February 2018

Contents
Introduction 1

Key findings 2

Notes on the survey population and accuracy 2

Survey Results 3
Which JavaScript test automation frameworks does your team use? . . 4
Which JS mocking and expectation libraries do you use? 5
Do you use any code coverage tools for JavaScript? 6
Do you use any continuous integration tools or services? 6
Do you use browser stacks/automation tools? 6
Do you use any of these browser test runners? 6
Do you use any exception tracking tools? 7

More information 7

Follow-up research 7

About the author 7

Copyright note 8

Introduction

This document summarises the results of the JavaScript Testing Survey, con-
ducted between 15 January and 15 February 2018.

Software developers answered questions relating to their testing tools and prac-
tices, and rated the benefits and usability of their testing approach. The questions
relating to process benefits asked respondents to rate how much confidence their
tests provide to release frequently, how well they prevent bugs and how well

1

they document design decisions. The questions relating to tool usability asked
respondents to rate how easily they work with their tools, and how easily they
can write, maintain and understand test cases. The combined scores for those
groups of questions give a nice indication about how happy teams are with their
tooling choices.

Of course, the process benefits depend more on the contents of the test cases
rather than the tools themselves, but a big difference in the benefits rating could
point out that a particular tool is not suitable for some key workflow. This
means that the tool is better if it scores higher on the usability rating, as long
as its process benefit ratings within reasonable range of similar top-voted tools.

Also, note that the benefits and usability questions were formulated so that
people rated their entire setup, not an individual tool, which is important where
they were using a combination of tools. I have separated out results for teams
using individual tools and combinations of tools below, to make it easier to
evaluate the differences.

Key findings

• Mocha is still the most popular tool individually, followed by Jasmine and
Jest.

• All the other tools are significantly less popular.
• Although Cucumber JS on its own isn’t popular enough to get to the top

3 choices on the list, combining Cucumber with one of the more popular
tools seems to make a big difference for developer usability.

• The highest rated tool choice, regarding developer usability, is the combi-
nation of Cucumber and Jest, scoring 10.44 (70%). This is higher than any
single tool rating, or any other combination. However, this combination is
just above the margin of error for the survey, so more data is needed to
fully confirm this finding.

• Roughly 12% of the respondents used no test automation tools for
JavaScript code

Notes on the survey population and accuracy

The survey includes 638 responses. Assuming 22,000,000 software developers
worldwide1, the margin of error is 4% at the 95% confidence level. This means
that a difference less than 26 respondents is within the margin of error. (At the
99% confidence level, the margin of error is 5%, or roughly 32 respondents).

1Evans Data Corporation, Global Developer Population and Demographic Study 2017,
https://evansdata.com/reports/viewRelease.php?reportID=9

2

https://mochajs.org/
https://jasmine.github.io/
https://facebook.github.io/jest/
https://github.com/cucumber/cucumber-js
https://evansdata.com/reports/viewRelease.php?reportID=9

The maximum score for combined ratings is 15, so a score of 10 would correspond
to a 66% rating.

Most questions are multiple-choice, meaning the total number of responses for
all answers can be over 100%.

Here are some interesting statistics about the respondents (answers below margin
of error omitted):

Table 1: What kind of applications does you mostly work on?

Answer Responses Response %
Both 440 64%
Front end (web UI, mobile apps. . .) 159 23%
Back end (node.js, APIs, web servers. . .) 84 12%

Table 2: Does your product use any front-end framework?

Answer Responses Response %
React 292 43%
Angular 231 34%
Vue 61 9%
Our own 52 8%

Table 3: What types of testing does your team practice on the
current project?

Answer Responses Response %
Automated Unit testing 557 82%
Manual exploratory testing 396 58%
Automated integration testing 389 57%
Automated acceptance testing 264 39%
Manual scripted testing 198 29%
Usability testing 161 24%
Automated performance testing 120 18%

Survey Results

Answers below the margin of error are mostly omitted from the tables below.
Percentages of responses are rounded to the nearest number.

3

Which JavaScript test automation frameworks does your
team use?

Table 4: Popular test automation frameworks

Tool Responses Response % Process rating Usability rating
Mocha 307 45% 10.31 9.23
Jasmine 258 38% 9.91 8.84
Jest 201 29% 10.07 9.49
Cucumber JS 106 16% 10.55 9.83
qUnit 32 5% 10.06 8.78

Table 5: Aggregated numbers of unique entries for test frameworks
by respondent

Count Responses Response %
0 81 12%
1 339 50%
2 163 24%
3 74 11%

Table 6: Only teams using a single test framework

Tool Responses Response % Process rating Usability rating
Mocha 106 16% 10.37 9.63
Jasmine 102 15% 9.62 8.87
Jest 67 10% 9.63 9.66
Cucumber JS 32 5% 10.09 10.03

Table 7: Only teams developing React applications

Tool Responses Response % Process rating Usability rating
Jest 162 24% 10.11 9.72
Mocha 162 24% 10.49 9.51
Jasmine 91 13% 9.98 9.03
Cucumber JS 53 8% 10.70 10.26

4

Table 8: Only teams developing Angular applications

Tool Responses Response % Process rating Usability rating
Jasmine 142 21% 9.96 8.92
Mocha 94 14% 9.97 8.76
Cucumber JS 42 6% 10.05 9.36
Jest 38 6% 10.92 9.68

Table 9: Only teams developing mostly back-end applications

Tool Responses Response % Process rating Usability rating
Mocha2 46 6% 10.87 9.48
Jasmine 20 2% 9.60 8.80
Jest 14 2% 9.79 8.14
Cucumber JS 13 1% 10.85 10.0
Intern 3 0% 12.00 8.33
qUnit 3 0% 10.67 9.00

Table 10: Combined ratings for teams using more than one tool

Tool Responses % Process rating Usability rating
Jasmine+Mocha 121 18% 10.12 8.79
Jest+Mocha 98 14% 10.39 9.22
Jasmine+Jest 65 10% 10.17 8.92
Cucumber JS+Mocha 45 7% 11.09 9.69
Cucumber JS+Jasmine 38 6% 10.58 9.66
Cucumber JS+Jest 27 4% 10.78 10.44

Which JS mocking and expectation libraries do you use?

Table 11: Utility testing libraries by popularity

Library Responses Response %
Chai 252 37%
built-in libraries with the test automation tool 243 36%
Sinon 183 27%
Testdouble 25 4%

2Only the first answer in this table is above the margin of error, the others are there more
for illustrative purposes.

5

Do you use any code coverage tools for JavaScript?

Table 12: Test code coverage tools

Answer Responses Response %
We don’t track test coverage 378 55%
Istanbul 132 19%
included with our test tool 120 18%

Do you use any continuous integration tools or services?

Table 13: Continuous integration tools – note the ratings are for
the whole tool setup by the team, not just the entry in the table

Tool Responses % Process rating Usability rating
Jenkins 320 47.0% 9.87 9.02
TeamCity 85 12.0% 9.86 9.15
Travis 72 11.0% 10.68 9.18
CircleCI 69 10.0% 10.30 9.29
Home-grown 27 4.0% 8.70 8.44

Do you use browser stacks/automation tools?

Table 14: Browser automation tools – note the ratings are for the
whole tool setup by the team, not just the entry in the table

Tool Responses % Process rating Usability rating
Selenium 295 43% 10.15 9.21
Protractor 96 14% 10.15 9.24
Browserstack 81 12% 9.98 8.79
Nightwatch 47 7% 10.49 9.42
Sauce labs 41 6% 10.98 9.37

Do you use any of these browser test runners?

6

Table 15: Browser test runners

Answer Responses Response %
Karma 259 38%
included in our test tool 102 15%

Do you use any exception tracking tools?

Table 16: Exception and crash tracking tools

Answer Responses Response %
Not tracking errors 362 53%
Web analytics (eg Google Analytics) 105 15%
Sentry 104 15%
TrackJS 26 4%
Rollbar 23 3%

More information

Check out https://gojko.net/2018/02/25/javascript-testing-tools.html for a more
in-depth analysis of the tool popularity findings.

Follow-up research

If you would like to participate in a similar research next year, or get notified
when I publish the next results, please sign up here http://eepurl.com/dl0dT1.
Alternatively, if you’re just interested in the results, follow gojkoadzic on Twitter.

About the author

Gojko Adzic is a partner at Neuri Consulting LLP. He is the winner of the
2016 European Software Testing Outstanding Achievement Award, and the 2011
Most Influential Agile Testing Professional Award. Gojko’s book Specification
by Example won the Jolt Award for the best book of 2012, and his blog won the
UK Agile Award for the best online publication in 2010.

Gojko is a frequent speaker at software development conferences and one of the
authors of MindMup and Claudia.js.

7

https://gojko.net/2018/02/25/javascript-testing-tools.html
http://eepurl.com/dl0dT1
https://twitter.com/gojkoadzic
https://neuri.co.uk
http://www.softwaretestingawards.com/winners-2016/
http://www.agiletestingdays.com/award.php
http://www.agiletestingdays.com/award.php
https://www.amazon.com/Specification-Example-Successful-Deliver-Software/dp/1617290084
https://www.amazon.com/Specification-Example-Successful-Deliver-Software/dp/1617290084
http://www.drdobbs.com/joltawards/jolt-awards-the-best-books/240007480?pgno=7
https://gojko.net
https://gojko.net/lists/presentations.html
https://www.mindmup.com
https://claudiajs.com

As a consultant, Gojko has helped companies around the world improve their
software delivery, from some of the largest financial institutions to small innova-
tive startups. Gojko specialises in are agile and lean quality improvement, in
particular impact mapping, agile testing, specification by example and behaviour
driven development.

Copyright note

Copyright (c) Gojko Adzic 2018. This document is licensed under Creative
Commons Attribution 4.03 license. You are free to share and adapt the document,
but please leave a reference to https://gojko.net and provide appropriate credit
for the original work.

3https://creativecommons.org/licenses/by/4.0/

8

	Introduction
	Key findings
	Notes on the survey population and accuracy
	Survey Results
	Which JavaScript test automation frameworks does your team use?
	Which JS mocking and expectation libraries do you use?
	Do you use any code coverage tools for JavaScript?
	Do you use any continuous integration tools or services?
	Do you use browser stacks/automation tools?
	Do you use any of these browser test runners?
	Do you use any exception tracking tools?

	More information
	Follow-up research
	About the author
	Copyright note

