How serverless impacts design

https://gojko.net/assets/dddeu20.pdf

"Modelling"

"Design"

- itinerary service
- -shipping containers repository

"Deployment"

- itinerary service scaled to 5 web servers
 container repository synced to DB
- itinerary requests pushed to message queue

"Server"

Serverless Socketless

```
public class LambdaMain implements RequestHandler<Event, Response> {
   public Response handleRequest(Event request, Context context){
     // do something useful with the event
   };
};
```


Serverless Distractionless

- Generic: hire from the cloud provider
- Supporting: customise provider services
- Core: more time left for this

Deliver on demand, never pay for idle

- AWS re:Invent 2016, Tim Wagner

Serverless Reservationless

provider	1m requests	Free	CPU Time 512MB,100ms
AWS	0.2	1m	.00000834
Azure	0.2	im	.0000008
GCP	0.4	2m	.00000925

Lambda US-east-1; Azure, central US; https://aws.amazon.com/lambda/pricing/; https://cloud.google.com/functions/pricing; https://azure.microsoft.com/en-us/pricing/details/functions/

Paying for utilisation

- not capacity
- not environments
- not instances

Serverless financially rewards good design

(instantly, not at some potential distant future)

MindMup.com

Heroku February 2016 ⇒ Lambda February 2017

~ -50% operational costs

~ +50% active users

~ 66% estimated savings

"lowered five-year operating costs by 60% and were 89% faster at compute deployment"

- IDC white paper on AWS Serverless

ADDS = Tasks

single critical "CORE" ⇒ many tiny "kernels"

Apps

Tasks

bounded contexts around teams, products

each "task" a potential context?

conceptual consistency

security/access

anti-corruption layers carefully planned

change blast radius inherently small

Time=money, very literally

Time=money, very literally

Traditional

Serverless

Model ⇒ Design ⇒

Deployment

⇒ Design

long-lived objects

short-lived tasks

Data transfer synthetic, based on aggregates

Data transfer key to the model

Events become

"mini-aggregates"

Traditional

Serverless

Focus on the core, design it well

Design the protocol, other stuff is fixable later

push ugliness to boundaries

focus on the boundaries

Gojko Adzic | gojko.net | @gojkoadzic | https://gojko.net/assets/dddeu20.pdf | DDD Europe 2020

RPC / invocations

Events / messaging

pretend network does not exist

assume network exists

requests

intent/facts

"shared kernel" / tight coupling

"open host" / don't care

Key challenge for "protocol" design

Design events complete enough to avoid chattiness, but still generic enough to allow decoupling and reuse

Groups of tasks end up as bounded contexts...

use runtime security needs as a hint about context boundaries!

Traditional

Serverless

Infrastructure is stateful Infrastructure is or stateless transient

Reserved capacity

Utilised capacity

Model changes over time, but consistent at any point in time

Model changes over time, may be inconsistent at single point in time

Traditional

Serverless

Infrastructure is stateful or stateless

Infrastructure is transient

Reserved capacity

Utilised capacity

Model Universe

Model Multiverse

Version-tolerant design

http://leanpub.com/running-serverless/c/dddeu

50% off this week

